HESS Opinions “Catchments as meta-organisms – a new blueprint for hydrological modelling”

نویسنده

  • Hubert H. G. Savenije
چکیده

Catchment-scale hydrological models frequently miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem. It manipulates and partitions moisture in a way that supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, establishing a continuous, ever-evolving feedback loop with the landscape and climatic drivers. In brief, hydrological systems are alive and have a strong capacity to adjust themselves to prevailing and changing environmental conditions. Although most models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian theory on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. In addition, catchments, such as many other natural systems, do not only evolve over time, but develop features of spatial organization, including surface or sub-surface drainage patterns, as a by-product of this evolution. Models that fail to account for patterns and the associated feedbacks miss a critical element of how systems at the interface of atmosphere, biosphere and pedosphere function. In contrast to what is widely believed, relatively simple, semi-distributed conceptual models have the potential to accommodate organizational features and their temporal evolution in an efficient way, a reason for that being that because their parameters (and their evolution over time) are effective at the modelling scale, and thus integrate natural heterogeneity within the system, they may be directly inferred from observations at the same scale, reducing the need for calibration and related problems. In particular, the emergence of new and more detailed observation systems from space will lead towards a more robust understanding of spatial organization and its evolution. This will further permit the development of relatively simple time-dynamic functional relationships that can meaningfully represent spatial patterns and their evolution over time, even in poorly gauged environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HESS Opinions “Crash tests for a standardized evaluation of hydrological models”

As all hydrological models are intrinsically limited hypotheses on the behaviour of catchments, models – which attempt to represent real-world behaviour – will always remain imperfect. To make progress on the long road towards improved models, we need demanding tests, i.e. true crash tests. Efficient testing requires large and varied data sets to develop and assess hydrological models, to ensur...

متن کامل

Catchment classification by runoff behaviour with self-organizing maps (SOM)

Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (E...

متن کامل

Which spatial discretization for which distributed hydrological model?

Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract Di...

متن کامل

How far can we go in distributed hydrological modelling?

This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of the problems of distributed modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the problem o f uniqueness and the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an...

متن کامل

Landscape Controls on Runoff and Streamflow in Large Arid Zone Catchments

The arid zone catchments of the Lake Eyre Basin (LEB, area of 1.2*10km) in central Australia have unregulated, highly variable flow regimes and contain a paucity of gauging stations. In developing hydrological models of these catchments, only limited gauging station data are available for identifying the broad landscape differences influencing runoff and streamflow. The catchments have been div...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017